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Abstract: We consider (3 + 1)-dimensional SU(N)/ZN Yang-Mills theory on a space-

time with a compact spatial direction, and prove the following result: Under a continuous

increase of the theta angle θ → θ + 2π, a ’t Hooft operator T (γ) associated with a closed

spatial curve γ that winds around the compact direction undergoes a monodromy T (γ) →

T ′(γ). The new ’t Hooft operator T ′(γ) transforms under large gauge transformations in

the same way as the product T (γ)W (γ), where W (γ) is the Wilson operator associated

with the curve γ and the fundamental representation of SU(N).
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1. Introduction

Wilson operators and ’t Hooft operators constitute important observables in non-abelian

Yang-Mills theory in d = 3+1 dimensions. In this paper, we will consider the gauge group

G ' SU(N)/C , (1.1)

where C ' ZN denotes the center of SU(N). The basic Wilson operator W (γ) associated

with a closed spatial curve γ is then defined as

W (γ) =
1

N
Tr

(

P exp

∫

γ
A

)

, (1.2)

where A is the connection one-form, P denotes path ordering along γ, and Tr is the trace

in the fundamental representation of SU(N). The operator W (γ) is invariant under gauge

transformations that can be continuosly deformed to the identity transformation. Under a

general gauge transformation, W (γ) is multiplied by an N -th root of unity determined by

the class in π1(G) ' ZN of (the restriction to γ of) the gauge transformation.

The definition of the corresponding ’t Hooft operator T (γ) is less explicit [1]: On

the complement of γ in space, T (γ) is given by a G valued gauge transformation, whose

restriction to another closed curve that links γ once represents the image of the generator

1 of ZN under the isomorphism ZN ' π1(G). Such a transformation has a well-defined

action on all the fields of the theory, but is obviously singular at the locus of γ. By

deforming the transformation over a tubular neighbourhood of γ, we regularize it to a

smooth transformation defined over all of space-time. The precise form of the regularization

is of no consequence for the arguments of the present paper; the important point is that

the resulting field configuration is smooth everywhere. The regularized transformation is

however not a gauge transformation, so the ’t Hooft operator T (γ) thus defined has a

non-trivial action also on gauge invariant states.
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This definition of the ’t Hooft operator in terms of a singular gauge transformation

is ambigious in the sense that it allows for the multiplication of T (γ) by a phase-factor,

which may be an arbitrary gauge-invariant functional of the fields of the theory. It may

even be impossible to give a globally valid prescription for fixing this ambiguity. Indeed, it

has been stated in several papers (see for example [2][3][4]), that under a smooth increase

θ → θ + 2π of the theta angle, T (γ) undergoes a monodromy

T (γ) → T ′(γ) , (1.3)

where the new ’t Hooft operator T ′(γ) behaves as the product T (γ)W (γ); it could be called

a Wilson-’t Hooft operator. (On the other hand, the explicit expression (1.2) shows that

the corresponding monodromy of the Wilson operator W (γ) is trivial; W (γ) → W (γ).)

This monodromy of operators associated with closed spatial curves is analogous to the

Witten effect [5], which amounts to an increase of the electric charge of a magnetically

charged dyonic particle state as θ → θ + 2π continuously.

However, we are not aware of any published proof of the monodromy transforma-

tion (1.3). The aim of the present paper is to provide such a proof, based on a topological

obstruction that prevents a global definition of T (γ). The obstruction will only be present

if the curve γ represents a non-trivial homotopy class. We will therefore consider the theory

on a spatial three-manifold X of the form

X ' S1 × R2 , (1.4)

and let γ wind once around the S1 factor of X. However, even if there is no topological

obstruction against a global definition of the ’t Hooft operator if we take the spatial man-

ifold as R3, it is certainly natural to assume a similar monodromy transformation also in

this case.

In the next section, we will review the interpretation of the ’t Hooft operator T (γ)

in terms of the topology of principal G bundles over space. In section three, we will

consider the topology of the group of gauge transformations. A gauge transformation may

be winded in two different ways: along the curve γ, or over three-space as a whole. As

discussed above, gauge transformations that are winded along γ have a non-trivial action

on the Wilson operator. The transformation properties under gauge transformations that

are winded over three-space as a whole are described by the theta angle. In section four,

we will show how the interplay of these effects leads to the monodromy property (1.3).

2. ’t Hooft operators

We begin by reviewing the classification of principal G ' SU(N)/C bundles over a low-

dimensional compact connected space B. This follows from the first few homotopy groups

of G:

πi(G) '



















0, i = 0

ZN , i = 1

0, i = 2

Z, i = 3.

(2.1)
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Thus, for a one-dimensional base space B, all G bundles are trivial. For a two- or three-

dimensional B, they are classified by a characteristic class

w2 ∈ H2(B, ZN ) , (2.2)

known as the second Stiefel-Whitney class in mathematics or the discrete magnetic flux in

physics. For a four-dimensional B there is an additional characteristic class

c2 ∈ H4(B, Q) , (2.3)

known as the second Chern class or the instanton number. It is related to the second

Stiefel-Whitney class w2 as

c2 =
1

2

(

1

N
− 1

)

w̄2 ∪ w̄2 mod H4(B, Z) , (2.4)

where w̄2 ∈ H2(B, Z) denotes an arbitrary lifting of w2 to an integral class. (An instructive

proof of this relation can be found in e.g. [6].) In higher dimensions, there are further

invariants, but they will not be needed in the present paper.

Consider now a state of finite energy in Yang-Mills theory with gauge group G on the

spatial manifold X ' S1 × R2. As we go to infinity in the R2 factor, all physical data

must approach their vacuum values. We may therefore add the points at infinity, thereby

replacing X by the compact space

X ′ ' S1 × S2. (2.5)

However, while a G bundle P over X is necessarily trivial (since H2(X, ZN ) ' 0), this is

not so for a G bundle P ′ over X ′; according to the previous paragraph, such bundles are

classified by a characteristic class w′
2 ∈ H2(X ′, ZN ) ' ZN .

It is now easy to understand the action of an ’t Hooft operator T (γ) associated with a

closed curve γ that winds once around the S1 factor of X or X ′: When acting on a state

|ψ〉 with a definite value w′
2 of the second Stiefel-Whitney class, it produces another state

|ψ̃ >= T (γ) |ψ〉 for which the second Stiefel-Whitney class takes the value w̃′
2 given by

w̃′
2 = w′

2 + 1. (2.6)

(In this formula, we identify a class in H2(X ′, ZN ) with its image under the isomorphism

H2(X ′, ZN ) ' ZN .)

3. Large gauge transformations

This section is largely inspired by [7].

Let P ′ be a G bundle over X ′ ' S1 × S2, characterized by its value w′
2 ∈ H2(X ′, ZN )

of the second Stiefel-Whitney class, as described in the previous section. We let G denote

the group of gauge transformations, i.e. the group of bundle automorphisms of P ′. It

is not connected; the component of G containing the identity transformation is a normal
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subgroup, which we denote as G0. Physical states must be invariant under G0, but they

need not be invariant under all of G. Their transformation properties may be given by an

arbitrary character of the quotient group of homotopy classes of gauge transformations

Λ ' G/G0. (3.1)

We will need to understand the structure of the discrete abelian group Λ. Let Λγ '

π1(G) ' ZN be the group of homotopy classes of gauge transformations for the trivial

bundle over the spatial curve γ that is obtained by restricting the bundle P ′ to γ. Let Λ0 '

π3(G) ' Z be the subgroup of Λ consisting of homotopy classes of gauge transformations

of P ′ that are trivial when restricted to γ. We thus have a short exact sequence

0 → Λ0
i
→ Λ

r
→ Λγ → 0 , (3.2)

where i and r are the obvious inclusion and restriction maps respectively. In other words,

the group Λ is an extension of Λγ ' ZN by Λ0 ' Z. To describe this extension precisely,

we choose a λ ∈ Λ such that r(λ) equals the image of the generator 1 of ZN under the

isomorphism ZN ' Λγ . Since λN ∈ ker r and the sequence is exact, λN ∈ Im i, so

λN = Ωk , (3.3)

where Ω is the generator of Λ0 ' Z and k is some integer, which depends on the choice of

λ. (Here we have switched to a multiplicative rather than additive notation for the group

operations.)

To compute the integer k, we consider the four-dimensional space

Y ' S1 × X ′ ' S1 × S1 × S2. (3.4)

(As will become clear, this auxiliary space should not be thought of as a space-time.) We

construct two G bundles P λ and PΩ over Y by first extending the given bundle P over the

cylinder I ×X ′, where I is an interval, and then gluing the ends together with gluing data

λ or Ω respectively. We then have that

Ncλ
2 = kcΩ

2 , (3.5)

where cλ
2 and cΩ

2 are the second Chern classes of the bundles P λ and PΩ respectively. The

class cΩ
2 ∈ H4(Y, Q) is given by the image of the element 1 of Q under the isomorphism

Q ' H4(Y, Q). According to (2.4), the class cλ
2 ∈ H4(Y, Q) is determined modulo H4(Y, Z)

by the second Stiefel-Whitney class wλ
2 ∈ H2(Y, ZN ) of P λ. The latter class is determined

by its restrictions to the factors S1 × S1 and S2 on the right hand side of (3.4). The

restriction of wλ
2 to S1×S1 is in fact given by r(λ) ∈ H2(S1×S1, ZN ) ' Λγ . The restriction

of wλ
2 to S2 equals the second Stiefel-Whitney class w′

2 ∈ H2(S2, ZN ) ' H2(X ′, ZN ) of P ′.

Thus

wλ
2 = p∗1(r(λ)) + p∗2(w

′
2) , (3.6)

where p1 and p2 are the projections from Y to S1 × S1 and S2 respectively. A small

calculation now gives

cλ
2 =

1

N
p∗1(r(λ)) ∪ p∗2(w

′
2) mod H4(Y, Z). (3.7)
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Putting everything together, we find that k = w′
2 mod N , where w′

2 denotes the image of

the second Stiefel-Whitney class of P ′ under the isomorphism H2(X ′, ZN ) ' ZN . (Since λ

is only defined modulo Ω, we can only determine k modulo N .)

In summary, we have found that the group Λ is generated by the elements λ and Ω,

subject to the relation

λN = Ωw′

2
mod N . (3.8)

4. The monodromy

A physical state |ψ〉 is characterized by a certain value w′
2 of the second Stiefel-Whitney

class, as described in section two. Its transformation properties under the discrete abelian

group Λ described in the previous section can be specified by the eigenvalues eiθ and eiφ

of the generators Ω and λ respectively:

Ω |ψ〉 = eiθ |ψ〉

λ |ψ〉 = eiφ |ψ〉 . (4.1)

As the notation suggests, θ is indeed the theta angle parameter of Yang-Mills theory. The

relation (3.8) implies that

eiφN = ei(w′

2
+nN)θ (4.2)

for some integer n. If we follow a particular solution to this equation under a continuous

increase θ → θ + 2π, the eigenvalue eiφ undergoes the monodromy

eiφ → eiφe2πiw′

2
/N . (4.3)

Acting with an ’t Hooft operator T (γ) on |ψ〉 produces another state |ψ̃ >= T (γ) |ψ〉

with the value w̃′
2 = w′

2 + 1 of the second Stiefel-Whitney class. Repeating the above

argument, we find that the corresponding eigenvalue eiφ̃ of the generator λ undergoes the

monodromy

eiφ̃ → eiφ̃e2πi(w′

2
+1)/N . (4.4)

The different monodromy properties of the two states mean that the ’t Hooft operator

must undergo a monodromy

T (γ) → T ′(γ). (4.5)

The quotient Ŵ (γ) = T ′(γ)T−1(γ) can be characterized by its transformation property

under λ:

λŴ (γ)λ−1 = e2πi/NŴ (γ). (4.6)

But this agrees with the transformation property of the Wilson operator W (γ) in the fun-

damental representation of SU(N) as defined in (1.2). So although the present arguments

do not give an exact description of T ′(γ) (which would depend on the precise prescription

for regularizing the ’t Hooft operators in the vicinity of γ), we can conclude that T ′(γ)

indeed transforms in the same way as the product T (γ)W (γ) under gauge transformations.
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